
BONUS CHAPTER 1 Manipulating Elements with Transforms BC1

 Manipulating Elements
with Transforms

With CSS3 came new ways to position and alter elements. Now general layout
techniques can be revisited with alternative ways to size, position, and change
elements. All of these new techniques are made possible by the transform
property.

 —SHAY HOWE

 W hen you add a block-level element such as a div to your page, that
element comes with certain default properties such as a position within
the page fl ow, a width and height, and an aspect ratio (the ratio of

width to height). But each block-level element also exists within a hidden two-
dimensional coordinate space that has its origin in the center of the element. That
coordinate space is important because it defi nes the region within which you can
apply certain manipulations to the element, such as moving the element within
the space, rotating the element around its origin point, growing or shrinking the
element within the space, and messing with the element ’ s aspect ratio.

 Each of these manipulations is known as a transform in CSS lingo, and transforms
represent (arguably, I suppose) the most basic level of CSS animation. But “basic”
doesn’t mean unsophisticated. As you discover in this chapter, the four main

Bonus Chapter 1

 IN THIS CHAPTER

» Getting to know CSS transforms

» Translating elements to and fro

» Rotating elements round and round

» Scaling elements bigger and smaller

» Skewing elements this way and that

BC2 HTML, CSS, & JavaScript All-in-One For Dummies

two-dimensional transform operations — translate, rotate, scale, and skew — are
both subtle and powerful and come with tons of real-world use cases.

Translating an Element
When you translate an element, you shift the element up, down, left, or right from
its original position in its coordinate space. To translate an element, you can use
either the translate property or the transform property with the translate()
function:

translate: x[, y];
transform: translate(x[, y]);
transform: translateX(x);
transform: translateY(y);

 » x: A CSS length measurement or percentage that specifies how much and in
what direction the element is moved horizontally. Positive values move the
element to the right; negative values move the element to the left.

 » y: A CSS length measurement or percentage that specifies how much and in
what direction the element is moved vertically. Positive values move the
element down; negative values move the element up.

The translate property is relatively new, although it already has pretty good
browser support (a bit more than 90 percent as I write this). Check the Can
I Use page to track browser support for this property: https://caniuse.com/mdn-
css_properties_translate. If you need to support older browsers, stick with the
transform property and its translate() function.

Here are two important things to remember about the translate property and the
translate functions:

 » Translating an element doesn’t cause the surrounding elements to reflow. As
far as the browser’s default page flow is concerned, it’s as though the element
hasn’t budged a pixel, so even though the element is now elsewhere on the
page, the browser maintains the element’s default page flow space.

 » When you use a percentage value for x or y, that percentage is based on the
dimensions of the element, not its parent (as you might expect). So, for
example, if you specify transform: translateX(100%), the element gets
shifted right by an amount equal to its width.

M
anipulating Elem

ents
w

ith Transform
s

BONUS CHAPTER 1 Manipulating Elements with Transforms BC3

Why not shift the element using absolute positioning, as I describe in Book 5,
Chapter 1? Absolute positioning is really a page layout technique, so you use it
when you want to alter your layout in some way. Translating is more of a design
technique, so you use it when you want to achieve a certain design effect on
your page.

Example: Making a button appear
“pressed” when it’s clicked
No rule exists that says your web page designs have to be skeuomorphic, which
means having your page elements resemble their real-world counterparts.
However, the occasional bit of real-object mimicry or mirroring can add a nice
touch to your user interface.

A good example is the button element. In the real world, a “button” is an object
that gets pushed in a little when it’s pressed, and then pops back out when it’s
released. You can mimic the same effect with a teensy amount of CSS, as shown
here (check out bk06ch01/example01.html in this book’s example files):

HTML:

<button type="button">Click me!</button>

CSS:

button:active {
 transform: translate(2px, 2px);
}

When the button is active — that is, when the user has pressed but not released
the mouse button on the button; or, when the button has the focus, the user has
pressed but not yet released the spacebar — the translate() function shifts the
button down two pixels and right two pixels, which very much makes the button
appear “pressed.” Releasing the mouse button (or the spacebar) causes the button
to return to its original position.

Example: Coding a toggle switch
A common element in many web apps is the toggle button (also called a toggle
switch or just a toggle), which enables the user to turn a setting or option on or
off. Yes, you could use a checkbox for that, but a toggle button adds visual interest
because it includes a “switch” that slides right and left to indicate that the button
is on and off.

BC4 HTML, CSS, & JavaScript All-in-One For Dummies

Here’s the HTML (check out bk06ch01/example02.html):

<div id="cb-label">
 Toggle switch
</div>
<input id="cb-toggle" type="checkbox" class="hide-me"

aria-labelledby="cb-label">
<label for="cb-toggle" class="toggle" tabindex="0"></label>

Here you have a div element that serves as the toggle button’s label. The toggle
switch is composed of two elements:

 » An input element with type="checkbox". You don’t use this checkbox
directly, however, so it’s hidden via class="hide-me" (described below).

 » A label element, which is the toggle itself. This element is tied to the check-
box using for="cb-toggle" (which is the id value used by the input
element) and class="toggle" (also described below). Note, too, the addition
of tabindex="0", which makes the toggle accessible via the keyboard.

Now here’s the CSS:

.toggle {
 position: relative;
 display: inline-block;
 width: 50px;
 height: 26px;
 background-color: hsl(0deg 0% 85%);
 border-radius: 25px;
 cursor: pointer;
}
.toggle::after {
 content: '';
 position: absolute;
 top: 2px;
 left: 2px;
 width: 22px;
 height: 22px;
 background-color: white;
 border-radius: 50%;
}
#cb-toggle:checked + .toggle {
 background-color: hsl(102deg 58% 39%);
}

M
anipulating Elem

ents
w

ith Transform
s

BONUS CHAPTER 1 Manipulating Elements with Transforms BC5

#cb-toggle:focus + .toggle {
 outline: 3px dotted hsl(0deg 0% 75%);
}
#cb-toggle:checked + .toggle::after {
 transform: translateX(24px);
}
.hide-me {
 height: 0;
 opacity: 0;
 width: 0;
}

A toggle switch has two parts (check out Figure BC1-1): a button that slides back
and forth between the “off” and “on” states, and a background in which the slid-
ing occurs. That background is given by the label element and is styled by the
toggle class; the sliding button is given by the .toggle::after pseudo-element.

The “trick” in this technique is that when you’re working with a checkbox ele-
ment, the browser toggles the checkbox when the user clicks either the checkbox
itself or the checkbox label as defined by the label element. That’s why we can
hide the checkbox (using the .hide-me rule in the CSS), yet still toggle it on and
off because the label is still visible.

The .toggle rule styles the label element (the toggle background) with posi-
tion: relative (which creates a positioning context for the ::after pseudo-
element) and display: inline-block. It’s given a light background color and
rounded corners.

The .toggle::after pseudo-element styles the sliding button. It’s positioned
absolutely to fit inside the left side of the background. It uses border-radius:
50% so that it appears as a circle.

The real magic happens when the toggle (that is, the label element) is clicked:

#cb-toggle:checked + .toggle {
 background-color: hsl(102deg 58% 39%);
}

FIGURE BC1-1:
Our toggle switch
in the “off” state.

BC6 HTML, CSS, & JavaScript All-in-One For Dummies

This selector targets the toggle button (the toggle class) when the checkbox ele-
ment (given by #cb-toggle) is selected. The rule changes the background color of
the toggle to green (to indicate “on”).

We also have this:

#cb-toggle:checked + .toggle::after {
 transform: translateX(24px);
}

This selector targets the toggle button (the .toggle::after pseudo-element)
when the checkbox element (#cb-toggle) is selected. The rule uses the
translate() function to shift the switch 24px to the right when the button is
toggled to the “on” position, as shown in Figure BC1-2.

In this example, the label element is no longer pulling its semantic weight
because it’s styled to look like a toggle switch, so it no longer serves to label
anything. That’s a big accessibility no-no because screen readers and other
software that parse the page won’t have a label for the switch. To fix that problem,
I’ve given the div element id="cb-label" and added the aria-labelledby="
cb-label" to the checkbox element. This tells parsing software which element in
the page is acting as the checkbox label.

Also, the toggle needs some way of indicating that it has the focus when the user
tabs to it using the keyboard, and that focus indicator is styled with the following
rule in the CSS:

#cb-toggle:focus + .toggle {
 outline: 3px dotted hsl(0deg 0% 75%);
}

Rotating an Element
You can rotate an element around its midpoint by using either the rotate prop-
erty or the rotate() function:

FIGURE BC1-2:
Our toggle switch
in the “on” state.

M
anipulating Elem

ents
w

ith Transform
s

BONUS CHAPTER 1 Manipulating Elements with Transforms BC7

rotate: angle;
transform: rotate(angle);

 » angle: A CSS angular measurement that specifies how much the element is
rotated around its origin (which, by default, is the middle of the element;
check out “Playing around with the transform origin,” later in this chapter),
using one of the following angle units:

• deg: An angle in degrees, usually from 0 to 359, but negative values and
values of 360 or more are legal. For example, the negative value -60deg is
the same as 300deg, and the value 480deg is the same as 120deg. This is
the default unit, so if you leave it off the browser interprets your value as
an angle in degrees.

• rad: An angle in radians, usually from 0 to 6.2832 (that is, 2π), but any
positive or negative value is allowed.

• grad: An angle in gradians. A complete circle is 400grad.

• turn: An angle expressed as the number of complete rotations, where one
complete rotation is 1turn, a half rotation (180 degrees) is 0.5turn,
and so on.

The rotate property is newish, but it has decent browser support (just over
90 percent as I write this). Check in with the Can I Use page to monitor browser
support for this property: https://caniuse.com/mdn-css_properties_rotate.
If you need to support older browsers, stick with the transform property and its
rotate() function.

One concern with rotations is that when you rotate an element, you also rotate
its text. That’s probably fine for small rotations (say, up to 45 degrees), but
beyond that, your rotated text is going to make the user work hard to read it
(and, of course, most users won’t). In many cases, a better solution is to leave the
text alone and rotate something behind the text. Here’s an example (bk06ch01/
example03.html). First, it uses a header element with an h1:

<header>
 <h1>Welcome to my web page!</h1>
</header>

What I want to do is display a diamond shape — that is, a square rotated
45 degrees — “behind” the start of the h1 text. Here’s the CSS:

h1 {
 background: transparent;
 color: hsl(100deg 40% 60%);

BC8 HTML, CSS, & JavaScript All-in-One For Dummies

 font-size: 5rem;
 font-variant: small-caps;
 position: relative;
}
h1::before {
 background-image: linear-gradient(to bottom right,

hsl(208deg 50% 70%) 0%, hsl(208deg 50% 40%) 100%);
 content: '';
 position: absolute;
 top: 0;
 left: 0;
 height: 8rem;
 width: 8rem;
 transform: rotate(45deg);
 z-index: -1;
}

The h1 rule, among other things, styles the h1 element with a transparent back-
ground and position: relative to provide a positioning context. The h1::before
pseudo-element is positioned absolutely at the top-left corner of the h1 ele-
ment; it’s given a height and width of 8rem, making it a square; it’s then rotated
45 degrees with transform: rotate(45deg); finally, it’s given z-index: -1 to
make it appear behind the h1 element. Figure BC1-3 shows the result.

Scaling an Element
You can grow or shrink an element from its original dimensions by using either
the scale property or the scale() function:

scale: valueX [valueY];
transform: scale(valueX [valueY]);
transform: scaleX(valueX);
transform: scaleY(valueY);

FIGURE BC1-3:
The h1::before
pseudo-element

is a rotated
square that

appears behind
the h1 text.

M
anipulating Elem

ents
w

ith Transform
s

BONUS CHAPTER 1 Manipulating Elements with Transforms BC9

 » valueX: A number or percentage that specifies the multiplier used to scale
the element horizontally. Numbers between 0 and 1 or percentages between
0% and 100% shrink the element along the horizontal axis; numbers over
1 or percentages over 100% grow the element along the horizontal axis.

 » valueY: A number or percentage that specifies the multiplier used to scale
the element vertically. Numbers between 0 and 1 or percentages between
0% and 100% shrink the element along the vertical axis; numbers over 1 or
percentages over 100% grow the element along the vertical axis. If you omit
valueY in the scale property or the scale function, the browser applies
valueX multiplier to both the horizontal and vertical axes.

For example, a nice interface tweak is to slightly increase the size of a clickable
element when a mouse user hovers the pointer over the element or a keyboard
user gives the element the focus. This is a perfect job for scaling the element, so
the following examines how that works. First, here’s some HTML for a simple
navigation section (bk06ch01/example04.html):

<nav>

 home
 products
 blog
 support

</nav>

In the CSS, I’ve styled each li element to look like a button. The scaling happens
here:

nav li:hover,
nav li:has(a:focus) {
 transform: scale(1.2);
}

The first selector targets the li element that’s a nav descendant and has the
hover state. The second selector targets the li element that’s a nav descend-
ant and which contains an a element that’s currently in the focus state. Either
way, the targeted li element is transformed with scale(1.2), as demonstrated
in Figure BC1-4.

BC10 HTML, CSS, & JavaScript All-in-One For Dummies

Skewing an Element
You can distort an element from its original shape by using the skew() function:

transform: skew(angleX [, angleY]);
transform: skewX(angleX);
transform: skewY(angleY);

 » angleX: A CSS angular measurement that specifies how much the element is
distorted along the horizontal axis. Specify a value using any angle unit: deg,
rad, grad, or turn (check out “Rotating an Element,” earlier in this chapter for
more info on these units). Note that using skew(angleX) (that is, omitting the
angleY argument) is the same thing as using skewX(angleX).

 » angleY: A CSS angular measurement that specifies how much the element is
distorted along the vertical axis. Specify a value using any angle unit: deg, rad,
grad, or turn (check out “Rotating an Element,” earlier in this chapter for
more info on these units).

Skew doesn’t get used all that often, but it’s useful for certain interesting effects.
Note that for elements that include text, the skew() function also skews the text,
which is usually going to make that text hard (if not impossible) to read. In many
cases, a better method is to leave the text as is and skew something behind the
text. Here’s an example (bk06ch01/example05.html). First, there’s some simple
navigation code:

<nav>

 home
 products
 blog
 support

</nav>

FIGURE BC1-4:
The li element in

the hover state
or with a link in

the focus state is
scaled larger.

M
anipulating Elem

ents
w

ith Transform
s

BONUS CHAPTER 1 Manipulating Elements with Transforms BC11

My goal is to style each navigation element as a button that uses a parallelogram
shape, which you get by skewing a square just so. Here’s the CSS:

nav li {
 background: transparent;
 display: inline-block;
 position: relative;
}
nav li::before {
 content: '';
 position: absolute;
 top: 0;
 right: 0;
 bottom: 0;
 left: 0;
 transform: skew(45deg);
 z-index: -1;
}

The nav li rule styles the li elements with a transparent background and
position: relative to provide a positioning context. The nav li::before
pseudo-element is positioned absolutely with top, right, bottom, and left all
set to 0, which gives the pseudo-element the exact dimensions of the li element.
The pseudo-element is then skewed 45 degrees with transform: skew(45deg);
finally, it’s given z-index: -1 to make it appear behind the li element.
Figure BC1-5 shows the parallelograms that result.

Transforming Your Transforms
I finish this chapter by examining a couple of ways you can gain a bit more control
over your CSS transforms.

FIGURE BC1-5:
The li::before
pseudo-element

is a square
skewed into a
parallelogram

shape.

BC12 HTML, CSS, & JavaScript All-in-One For Dummies

Playing around with the transform origin
Each transform operation starts from the so-called transform origin, which is the
point within the element’s coordinate space around which the transformation
is applied. For example, the rotate transform happens around the center of the
element.

Most of the time, but not always, the default transform origin will work just fine
for you. For example, consider the following code (bk06ch01/example06.html):

HTML:

<div>
 DANG<span class="dangling

layer">LING
</div>

CSS:

.layer {
 position: relative;
 display: inline-block;
}
.dangling {
 transform: rotate(90deg);
}

The point of this code is, given the word “DANGLING”, to rotate just the “LING”
part so that it appears to be dangling off the end of the “DANG” part. Figure BC1-6
shows the result.

Well, this isn’t what I wanted at all! What happened? The problem is that the point
of rotation is the center of the “LING” span element. To get the effect I want,

FIGURE BC1-6:
The rotation

using the default
transform origin.

M
anipulating Elem

ents
w

ith Transform
s

BONUS CHAPTER 1 Manipulating Elements with Transforms BC13

I have to specify a different transform origin point using the transform-origin
property:

transform-origin: x-offset y-offset;

 » x-offset: A CSS length measurement or percentage that specifies how much
you want the transform origin point shifted horizontally. You can also use one
of the following keywords: left (the left edge of the element), center (the
horizontal middle of the element), or right (the right edge of the element).

 » y-offset: A CSS length measurement or percentage that specifies how much
you want the transform origin point shifted vertically. You can also use one of
the following keywords: top (the top edge of the element), center (the
vertical middle of the element), or bottom (the bottom edge of the element).

Here’s a revised rule for the dangling class that adjusts the transform origin, and
Figure BC1-7 shows the result:

.dangling {
 transform: rotate(90deg);
 transform-origin: -0.1em 0.9em;
}

Applying multiple transforms at once
When you use the transform property on an element, you’re free to specify two
or more transformations.

FIGURE BC1-7:
The rotation

using the
adjusted

 transform origin.

BC14 HTML, CSS, & JavaScript All-in-One For Dummies

For example, consider the following div element, which acts as a wrapper for
some code for a product card (bk06ch01/example07.html):

<div class="card-wrapper">
 <!-- Card HTML goes here -->
</div>

Say you want to add a “NEW!” banner in the upper-left corner of the card. Here’s
some CSS that gets the job done (and to keep things uncluttered, I’ve left out the
CSS that does most of the styling):

.card-wrapper::before {
 content: 'NEW!';
 position: absolute;
 top: 0;
 left: 0;
 transform-origin: top;
 transform: rotate(-45deg) translate(-1.5rem, -1.5rem);
}

Note the last declaration, in particular, which applies both a rotate() function
and a translate() function on the pseudo-element. Figure BC1-8 shows the
result.

FIGURE BC1-8:
The pseudo-

element
 transformed with

both a rotation
and a translation.

