
BONUS CHAPTER 2 Animating CSS Properties with Transitions BC1

 Animating CSS
Properties with
Transitions

Our brains aren ’ t really built for things to just happen . Companies like
Apple understand this, and they account for it in their products. If you have
an iPhone, watch it carefully as you do things like lock/unlock it, or switch
between apps. Notice how much life there is in every interaction and
transition.

 —JOSH COMEAU

 B esides great content, the awesome pages you come across on the web have
a few things in common: good typography, solid layout, and a thoughtful
approach to responsiveness and accessibility. Chances are, those pages also

have one other feature in common: a sense of liveliness and a kind of twinkle that
come from the judicious use of animated eff ects. You may not even notice these
eff ects, but your brain registers them and probably squirts out some feel-good
dopamine in response because your brain reacts positively to the aliveness that
animation brings to the page.

Bonus Chapter 2

 IN THIS CHAPTER

» Learning how transitions work and
what properties can be animated

» Setting up some basic transitions

» Penetrating the mysteries of
transition timing functions

» Triggering transitions with JavaScript

» Taking accessibility into account
when using transitions

BC2 HTML, CSS, & JavaScript All-in-One For Dummies

In this chapter, you discover how to use animation to inject some élan into your
otherwise inert, just-sitting-there pages. In particular, you explore the remark-
able universe of CSS transitions, which enable you to animate a huge number of
properties with, in many cases, a single line of CSS code. With the techniques you
learn in this chapter, you’ll no longer be stuck just applying a CSS property; you’ll
be able to animate that property. Your page visitors, their brains bathed in dopa-
mine, will thank you for it.

What is a Transition?
All the CSS I talk about in this book has been applied by the web browser in,
as Shakespeare once said, “one fell swoop.” That is, whether it’s applying a
color, adding padding, or setting a font size, when the browser comes upon a
declaration (and assuming that declaration is a “winner” in the cascade; check
out Book 3, Chapter 4), the browser implements the declaration instantly. Even
transforms (the subject of Bonus Chapter 1) triggered by, say, the :hover pseudo-
class are applied right away in the sense that the transform immediately changes
the element to its new property value.

On the surface, nothing is inherently wrong with the browser’s unseemly haste
in applying the CSS it comes across. Speed is good, am I right? Well, not always,
because when “speed” means “instantly,” you often end up with something that
appears unnatural because few things in the real world happen instantly. An object
is in one state and then it changes to another state, and that change usually goes
through a continuum of intermediate states. There is, in short, a transition from
one state to another and it’s via that transition that we make sense of the change
and perceive the change as “natural.”

You can achieve that sense of naturalness in your web pages by asking the web
browser to apply some properties not right away, as usual, but via a continuous
series of intermediate states. This is called a transition and, as you learn in the rest
of this chapter, with transitions you can control not only which properties are
animated but also the animation trigger, the animation duration, and the anima-
tion timing.

In this chapter’s introduction, I use the phrase “judicious use of animated effects”
with italics here for emphasis. Why? Because, believe me, nobody wants to see
fireworks exploding while your page loads. Nobody wants to be inundated by
Hollywood-quality special effects when a menu opens. Nobody wants to hover the
mouse pointer over a button and sit through some interminable and ultimately
pointless transformation of the element.

Anim
ating CSS Properties

w
ith Transitions

BONUS CHAPTER 2 Animating CSS Properties with Transitions BC3

Go overboard with animations and you’ll enrage your visitors. Keep your anima-
tions subtle and useful and you’ll delight them. Your call!

Knowing which Properties You Can
Animate with Transitions

Basically, if a property takes values where it makes sense that changing from one
value to another can take place over time in a continuous series of intermediate
stages, that property is almost certainly animatable with a transition (or any of
the CSS animations that I discuss in Bonus Chapter 3).

For example, the opacity property can take a numeric value from 0 to 1 (or 0% to
100%), where 0 means the element is fully transparent and 1 means the element
is fully opaque. When setting, say, opacity: 0 on an element, it makes sense that
the change from the default of opacity: 1 could take place over time in a series
of intermediate stages. That is, instead of becoming immediately transparent, the
element could fade out over the course of a second or two.

By contrast, changing, say, the font-family property from one typeface to
another is a discrete change, meaning that the idea of having intermediate states
that change over time doesn’t make sense.

The Mozilla Developer Network maintains an exhaustive list of the CSS properties
that are animatable here: https://developer.mozilla.org/en-US/docs/Web/
CSS/CSS_animated_properties.

How Transitions Work
Defining a transition requires four things in your CSS for a specific element (or
selector):

 » The parameters of the transition. In particular, which element property you
want to animate and how long the animation should take.

 » The initial value for the property you’re animating. If the initial value is just
the default value for the property, you don’t need to specify the value.

BC4 HTML, CSS, & JavaScript All-in-One For Dummies

 » The state that triggers the transition. This is usually an action-based
pseudo-class such as :hover, :focus, or :active. However, you can also use
JavaScript to trigger a transition (check out “Using code to trigger a transition,”
later in this chapter).

 » The final value for the property you’re animating. You declare this final
value within the trigger rule.

Given these items, the animation process goes something like this:

1. The browser renders the element with the initial (or default) property.

2. The user (or a script) triggers the animation.

For example, if you used the :hover pseudo-class, the browser triggers the
animation when the user hovers the mouse pointer over the element.

3. The browser runs the transition based on the parameters you specified.

For example, if the property you’re animating is a transform using the
scale() function and your final property value is scale(1.5), the browser
begins scaling the element from its initial value, such as scale(1).

4. When the transition reaches the final property value, the browser ends
the animation.

The browser runs the animation for the duration you specify.

Setting Up a Basic Transition
Defining a transition is really a two-stage process. In the first stage, you apply
the initial property value (unless you’re starting with the default property value)
and then add the transition properties. At its most basic, a transition requires
two parameters: the property you’re animating and the duration of the animation.
You can either use individual properties for this or the transition shorthand
property:

transition-property: property-name;
transition-duration: time;
transition: property-name time;

 » property-name: The name of the property you want to animate. You can
also use the keyword all to tell the browser to transition all the animatable
properties that change with the trigger.

Anim
ating CSS Properties

w
ith Transitions

BONUS CHAPTER 2 Animating CSS Properties with Transitions BC5

 » time: A value expressed in seconds (s) or milliseconds (ms) that specifies how
long the transition takes to run from the initial property value to the final
property value.

For example, suppose you have the following button element (check out bk06ch02/
example01.html in this book’s example files):

<button>Hover over me</button>

Suppose, as well, that you want to animate a transform. Here’s the setup code for
that:

button {
 transition-property: transform;
 transition-duration: 1s;
}

So far, so good. The second stage is to set up the trigger and use that rule to spec-
ify the final value of the transition. For the example, you could do something like
this:

button:hover {
 transform: scale(2);
}

This tells the browser that when the user hovers the mouse pointer over the but-
ton, the browser should smoothly transition the button to twice its default size.
Figure BC2-1 shows the original button, and Figure BC2-2 shows the button at the
end of the transition. Note, as well, that when the user moves the mouse pointer
off the button, the browser transitions the button back to its original state.

FIGURE BC2-1:
The original

button.

BC6 HTML, CSS, & JavaScript All-in-One For Dummies

Adding transitions to the toggle switch
As another example, in Bonus Chapter 1, I illustrated the translate transform by
modeling a toggle switch. In particular, clicking that switch did two things:

 » Used the transform: translateX() property to shift the toggle button to
the left by 24px

 » Used the background-color property to change the toggle background color
to green

Both properties are animatable, so here’s some code that sets up a transition for
each property (check out bk06ch02/example02.html):

.toggle {
 transition: background-color 0.75s;
}
.toggle::after {
 transition: transform 0.75s;
}
#cb-toggle:checked + .toggle {
 background-color: hsl(102deg 58% 39%);
}
#cb-toggle:checked + .toggle::after {
 transform: translateX(24px);
}

Specifying multiple transitions
You don’t have to work with one transition at a time. CSS is perfectly happy if you
specify two or more transitions for a given element. You define multiple transi-
tions by using transition-property to specify a comma-separated list of the

FIGURE BC2-2:
The button

scaled to twice
its default size

at the end of the
transition.

Anim
ating CSS Properties

w
ith Transitions

BONUS CHAPTER 2 Animating CSS Properties with Transitions BC7

properties you want to animate, and by using transition-duration to specify a
comma-separated list of the transition durations:

transition-property: name1[, name2..., nameN];
transition-duration: time1[, time2..., timeN];
transition: name1 time1[, name2 time2..., nameN timeN];

The browser applies the duration time1 to the transition for the property name1,
the duration time2 to name2, and so on. Here’s an example (bk06ch02/example03.
hml):

button {
 background: hsl(100, 61%, 75%);
 color: hsl(0, 0%, 10%);
 transition-property: background, color, transform;
 transition-duration: 2s, 1s, 3s;
}
button:hover {
 background: hsl(100, 61%, 25%);
 color: hsl(0, 0%, 90%);
 transform: scale(2);
}

If there are fewer durations than there are properties, the browser repeats the
durations as needed so that every property has a duration. This means that if you
want every property transition to use the same duration, you need to specify only
a single time value:

transition-property: name1[, name2..., nameN];
transition-duration: time;

Delaying the Transition
It’s occasionally useful to delay the start of a transition. When you’re running
multiple transitions, for example, you may want one transition to end before
starting the next one. You can delay any transition by adding the transition-
delay property:

transition-property: property-name;
transition-duration: duration-time;
transition-delay: delay-time;
transition: property-name duration-time delay-time;

BC8 HTML, CSS, & JavaScript All-in-One For Dummies

 » property-name: The name of the property you want to transition

 » duration-time: The length of the transition in seconds (s) or millisec-
onds (ms)

 » delay-time: The amount of time you want the browser to wait before
starting the transition, expressed in seconds (s) or milliseconds (ms)

Note, in particular, that when you use the transition shorthand and you specify
two time values, the first time value is interpreted as the transition duration and
the second time value is interpreted as the transition delay. Here’s an example
(bk06ch02/example04.hml):

button {
 background: hsl(100, 61%, 75%);
 color: hsl(0, 0%, 10%);
 transition-property: background, color, transform;
 transition-duration: 1s;
 transition-delay: 0s, 1s, 2s;
}
button:hover {
 background: hsl(100, 61%, 25%);
 color: hsl(0, 0%, 90%);
 transform: scale(2);
}

Adding a Timing Function
CSS transitions work by taking the initial value of the animating property, the
final value of that property, and then applying a series of intermediate values that
change the property from the initial to the final value within the specified transi-
tion duration. This process of calculating a series of intermediate values is called
interpolation.

Intuitively, you’d think that interpolation would work something like this:

1. Subtract the final property value from the initial property value.

2. Divide the result of Step 1 by the number of milliseconds in the transition
duration.

3. Run the transition by continually incrementing the property value by the result
of Step 2 until the final value is reached.

Anim
ating CSS Properties

w
ith Transitions

BONUS CHAPTER 2 Animating CSS Properties with Transitions BC9

In other words, intuitively you may think that the “speed” of the transition would
be constant from the start of the animation to the end. However, when you make a
close examination of any transition, it becomes clear that the speed isn’t constant
at all. What actually happens is that the transition speeds up quickly to about the
halfway point, and then slows down to the finish. What’s up with that?

That, my friend, is CSS trying to make transitions appear more natural. After all,
when an action occurs in the real world, it’s rare for it to run at a constant rate.
A car takes a bit of time to get up to speed, and then it slows before it comes to
a stop; a snowball rolling down a hill starts slowly and then picks up speed as it
goes; a rubber ball dropped from a height bounces a few times when it hits the
floor.

CSS enables you to mimic these and similar natural behaviors by defining how the
speed of an animation varies throughout its duration. You define this animation
timing by specifying a timing function using the transition-timing-function
property:

transition-property: property-name;
transition-duration: duration-time;
transition-delay: delay-time;
transition-timing-function: timing-function;
transition: property-name duration-time delay-time

timing-function;

 » property-name: The name of the property you want to transition

 » duration-time: The length of the transition in seconds (s) or millisec-
onds (ms)

 » delay-time: The amount of time you want the browser to wait before
starting the transition, expressed in seconds (s) or milliseconds (ms)

 » timing-function: A keyword or function that specifies the timing you want
to use for the transition

Timing function keywords
Table BC2-1 lists the keywords you can use with the transition-timing-
function property.

Because most of these keywords ease (that is, slow down) the transition beginning
and/or end, they’re also known as easing functions.

BC10 HTML, CSS, & JavaScript All-in-One For Dummies

Here’s an example (bk06ch02/example05.html):

button {
 transition-property: transform;
 transition-duration: 2s;
 transition-timing-function: ease-in-out;
}
button:hover {
 transform: translateX(50vw);
}

That cubic-bezier() gobbledygook
Do you have deep furrows in your brow over the last column in Table BC2-1 and its
scary contents? You’re not alone, believe me. The cubic-bezier() function is an
intimidating beast, for sure, but really it’s just another way to express a transition
timing function by defining a curve (called a cubic-Bezier curve by math nerds)
that the transition “follows.” The slope of the curve at a given point determines
the current speed of the transition at that point:

 » The closer the slope of the curve is to horizontal, the slower the transi-
tion speed.

 » The closer the slope of the curve is to vertical, the faster the transition speed.

TABLE BC2-1 Keywords for the transition-timing-function
Property

Keyword Description cubic-bezier() Equivalent

ease Starts quickly, speeds up to the midpoint of the
transition, and then slows to the end. This is the default
timing function.

cubic-bezier
(0.25, 0.1, 0.25, 1)

ease-in Starts slowly and then speeds up to the end of the
transition.

cubic-bezier
(0.42, 0, 1, 1)

ease-out Starts quickly and then slows down to the end of the
transition.

cubic-bezier
(0, 0, 0.58, 1)

ease-in-out Starts slowly, speeds up to the midpoint of the
transition, and then slows to the end.

cubic-bezier
(0.42, 0, 0.58, 1)

linear The speed is constant throughout the transition. cubic-bezier(0, 0, 1, 1)

Anim
ating CSS Properties

w
ith Transitions

BONUS CHAPTER 2 Animating CSS Properties with Transitions BC11

The cubic-bezier() function values are coordinates on an x-y plane where x
represents the animation time and y represents the progression of the animating
property. The point (0,0) represents the beginning of the transition, and the point
(1,1) represents the end of the transition. The cubic-bezier() function values
are points between these two that deform the curve and, hence, the speed of the
transition.

Okay, I get it: The cubic-bezier() function just isn’t easy to grasp, at least in
part because you have no way to examine the function’s values and intuit the
curve they create. So, forget that.

Instead, you can also use your web browser’s dev tools to play around with cubic-
bezier() function values. Right-click the element that has the defined transi-
tion and then click Inspect to display the element in the dev tools. Next to the
element’s cubic-bezier() function, click the Open Cubic Bezier Editor icon to
launch the editor, shown in Figure BC2-3. (Figure BC2-3 shows the Chrome tool;
all the major browsers offer similar tools.)

FIGURE BC2-3:
In the browser
dev tools, use

the Cubic Bezier
Editor to build

your cubic-Bezier
curves visually.

BC12 HTML, CSS, & JavaScript All-in-One For Dummies

The Cubic Bezier Editor is a coordinate plane that shows animation time on the
x-axis and animation progression on the y-axis. The lower-left point (0,0) is the
start of the animation, while the upper-right point (1,1) is the end of the anima-
tion. Your job is to drag the other two points (represented by the circles attached
to line segments) in a way that defines the curve you want (remembering that
near-horizontal parts of the curve are where the animation runs slowly, whereas
near-vertical parts of the curve are where the animation runs quickly). You can
also click a preset timing function on the left side.

Feel free to drag the second curve button (the one attached to the end point of
the animation) above the plane, which will give you a “y” value of greater than 1.
This makes the animating property go “past” its final value briefly, which adds a
kind of “bounce” effect. (It is, admittedly, a pretty lame bounce effect. For the real
bounce deal, you need to set up animation frames, as I discuss in Bonus Chapter 3.)

Here’s an example (bk06ch02/example06.html):

HTML:

<div class="ball" tabindex="0">Click me</div>

CSS:

body {
 height: 100vh;
}
.ball {
 border-radius: 50%;
 height: 10rem;
 width: 10rem;
 transition-property: transform;
 transition-duration: 1.5s;
 transition-timing-function: cubic-bezier(0.5, 0.96, 0.75,

1.44);
}
.ball:focus {
 transform: translateY(calc(100vh - 10rem));
}

This code turns a div element into a ball that, when clicked, shifts the ball from
the top of the viewport to just past the bottom of the viewport, and then finally
back up to the bottom of the viewport.

Anim
ating CSS Properties

w
ith Transitions

BONUS CHAPTER 2 Animating CSS Properties with Transitions BC13

Scripting Transitions with JavaScript
In pure CSS, you can trigger an element transition by putting the property (or
properties) you want to animate inside an element pseudo-class such as :hover,
:focus, :focus-within, or :active. (Head for Book 3, Chapter 3, to learn about
these and other pseudo-classes.) These triggers are limited, but they may be all
you need.

However, if you want a bit more control over your transitions, you need to get
JavaScript on the job, which enables you to set up a wider range of transition trig-
gers as well as to run some code when a transition ends.

Using code to trigger a transition
To use JavaScript to trigger a transition, you need to set up your CSS and JavaS-
cript as follows:

 » CSS: You need to do two things:

• Style the element you want to animate with the transition-* properties
you want to use.

• Create a class that contains the final values of the property or properties
you want to transition. So, whereas before you put these declarations in a
pseudo-class rule, now you put them in a class rule. Make sure the element
you’re animating doesn’t use this class by default.

 » JavaScript: You need to set up two things here as well:

• Create an event listener that will trigger the transition. For example, you
may want to listen for clicks on the element you’re animating.

• In the event listener callback function, use the classList object’s add
method to add the class on the element. (For the details on the classList
object, check out Book 4, Chapter 6.) Because the element doesn’t have the
class by default, the add method inserts the class, which triggers the
transition.

Here’s an example (bk06ch02/example07.html):

HTML:

<div class="ball" tabindex="0">Click me</div>

BC14 HTML, CSS, & JavaScript All-in-One For Dummies

CSS:

body {
 height: 100vh;
}
.ball {
 border-radius: 50%;
 height: 10rem;
 width: 10rem;
 transition-property: transform;
 transition-duration: 1.5s;
 transition-timing-function: cubic-bezier(0.5, 0.96, 0.75,

1.44);
}
.move-ball {
 transform: translateY(calc(100vh - 10rem));
}

JavaScript:

// Listen for clicks on the ball element
document.querySelector('.ball').addEventListener('click',

(event) => {

 // Add the 'move-ball' class to the element
 event.target.classList.add('move-ball');
});

The HTML and CSS are the same as in the example from the previous section, but
now the transform declaration resides in the .move-ball rule. The JavaScript lis-
tens for clicks on the element with the .ball class. In the event handler, the script
uses event.target to reference the element (that is, in this case, event.target
is a reference to the element that was clicked), and then adds the move-ball class
to trigger the transition.

Here’s a slightly more involved example that animates a drop-down menu of
links (bk06ch02/example08.html):

HTML:

<nav>
 <button class="nav-menu-button">
 Menu
 </button>

Anim
ating CSS Properties

w
ith Transitions

BONUS CHAPTER 2 Animating CSS Properties with Transitions BC15

 <div class="nav-menu-dropdown-contents" aria-role="menu">
 Home
 Products
 Blog
 Contact
 </div>
</nav>

CSS:

.nav-menu-dropdown-contents {
 height: 0;
 left: 0;
 opacity: 0;
 position: absolute;
 top: 75px;
 transition: all 0.75s ease-out;
}
.nav-menu-dropdown-contents.show {
 height: fit-content;
 opacity: 1;
}
.nav-menu-dropdown-contents > a {
 display: block;
 border-radius: 5px;
 font-size: 1.25rem;
 padding: 4px 8px;
 text-decoration: none;
}

JavaScript:

// Get the Menu button
const menuButton = document.querySelector('.nav-menu-button');

// Listen for clicks on the Menu button
menuButton.addEventListener('click', () => {

 // Get the dropdown const menuDropdownList = document.
querySelector('.nav-menu-dropdown-contents');

 // Transition the dropdown by toggling the 'show' class
 menuDropdownList.classList.toggle('show');
});

BC16 HTML, CSS, & JavaScript All-in-One For Dummies

The HTML defines a nav element that include a Menu button element and a
div that includes four navigation links. The CSS styles the drop-down div (via
the selector .nav-menu-dropdown-contents) with height: 0 and opacity: 0,
which hides the menu by default. When the show class is added (via the selector
.nav-menu-dropdown-contents.show), the div is transitioned to height: fit-
content and opacity: 1 to make it appear. The JavaScript listens for clicks on the
Menu button, and the event handler uses the toggle method to add the show class
on the drop-down menu to trigger the transition.

Why did I use the toggle method instead of the add method to trigger the transi-
tion? Because in this case I want the transition to be reversible. That is, if the user
clicks the Menu button a second time, I want the menu to disappear. The easiest
way to do that is to toggle the class on and off.

Chaining multiple transitions
One of the nice things about transitions is that, especially compared to the
keyframe-based animations that I talk about in Bonus Chapter 3, they’re simple.
A transition gets triggered, it runs, and then it stops. Done!

That simplicity is great if you just want to add some subtle effects to your page
interface. However, you may find that you sometimes need a little something
extra to get the effect you want. I’m not talking about adding more animatable
properties to the transition. Nothing wrong with that (as long as you don’t go
overboard with it), but I’m after bigger game here: Running an entirely differ-
ent transition after the first one ends. This is called chaining transitions, and it
enables you to run one transition after another, which gives you extra scope for
all kinds of interesting effects.

Before getting to the code, let me stress, again, that you don’t want to let things
get out of hand here. You can usually get away with chaining two, perhaps three,
short transitions, but beyond that you’re asking way too much of your site visitors.

The secret to chaining transitions is that each transition fires a transitionend
event when a transition finishes. This means you can set up some JavaScript code
that listens for this event. When it fires, your callback function adds whatever
class you’ve defined for the second transition.

Here’s an example (bk06ch02/example09.html):

HTML:

<div class="ball" tabindex="0">Click me</div>

Anim
ating CSS Properties

w
ith Transitions

BONUS CHAPTER 2 Animating CSS Properties with Transitions BC17

CSS:

body {
 height: 100vh;
}
.ball {
 border-radius: 50%;
 height: 10rem;
 width: 10rem;
 transition-property: transform, background-color, color;
 transition-duration: 1s, 750ms, 750ms;
 transition-timing-function: ease;
 width: 10rem;
}
.move-ball {
 transform: translateY(calc(100vh - 10rem));
}
.color-ball {
 background-color: hsl(0deg 75% 60%);
 color: hsl(45deg 100% 90%);
}

JavaScript:

// Listen for clicks on the ball element
document.querySelector('.ball').addEventListener('click',

(event) => {

 // Add the 'move-ball' class to the element
 event.target.classList.add('move-ball');
});

// Listen for the transitionend event on the ball
document.querySelector('.ball').addEventListener('transition
end', (event) => {

 // Add the 'color-ball' class to the element
 event.target.classList.add('color-ball');

 // Is this the end of the second transition?
 if (event.propertyName === 'color') {

 // If so, change the ball text
 event.target.innerHTML = 'Thanks!';
 }
});

BC18 HTML, CSS, & JavaScript All-in-One For Dummies

In the .ball rule, notice that transition-property now specifies three prop-
erties, and transition-duration now specifies three durations. The CSS also
includes a .color-ball rule that changes the background-color and color prop-
erties. This rule defines the second transition.

In the JavaScript, the .ball element has an event listener for the transitionend
event that, when fired, adds the .color-ball class to the element. Just for fun,
the transitionend callback function also checks whether the transition event’s
property name is color, which means this is the end of the second transition, so
the code then modifies the ball text.

If you want to run some code when a transition starts, set up a listener for the
transitionstart event.

Making Your Transitions Accessible
When used with purpose and restraint, transitions can enhance your page inter-
face and delight your visitors. However, you need to be careful here because certain
kinds of animation can be extremely annoying for people with cognitive condi-
tions such as attention deficit hyperactivity disorder (ADHD); they can be trig-
gering for people who have epilepsy, vestibular disorders, or migraine sensitivity;
and they have been shown to cause problems such as dizziness, headaches, and
nausea. The bigger or more frenetic the animated effect, the greater the chance it
will cause problems for anyone subjected to it.

So, does this mean you should never use animation on your site? No, that’s too
drastic because there are ways to give users control over the animations they
encounter:

 » JavaScript: If your site has a “Settings” feature through which users can
customize their experience, be sure to add a setting that lets users turn off
animations. (If you don’t implement settings, an alternative would be a check-
box or switch somewhere on each page.) In your animation code, you could
then get the setting from local storage and test it: If the user doesn’t want
animation, then just before you add the transition class, set the transition-
duration property to a very small value (bk06ch02/example10.html):

event.target.style.transitionDuration = '0.01ms';

Anim
ating CSS Properties

w
ith Transitions

BONUS CHAPTER 2 Animating CSS Properties with Transitions BC19

 » CSS: The @media at-rule has a prefers-reduced-motion media feature that
will be set to either reduce (if the user has set the operating system prefer-
ence for reduced motion) or no-preference (if the user hasn’t set such a
preference). This means you can wrap your transition declarations in a media
query, like so (bk06ch02/example11.html):

@media (prefers-reduced-motion: no-preference) {
 .nav-menu-dropdown-contents {
 transition: all 0.75s ease-out;
 }

}

